Approximable Minimization Problems and Optimal Solutions on Random Inputs
نویسندگان
چکیده
In this paper we extend recent work about logical criteria for approximation properties of optimization problems. We focus on the relationship between logical expressibility and expected asymptotic growth of optimal solutions on random inputs. This further develops a probabilistic approach due to Behrendt, Compton and Grr adel showing that expected optimal solutions for any problem in the class Max 1 grows essentially like a polynomial. We show that there is a similar result for Min F + 1, a syntactic class of minimization problems which provides a logical criterion for approximability. As a consequence, we show that some important problems do not belong to Min F + 1.
منابع مشابه
A Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کاملOptimal Allocation of Resources Using the Ideal-Solutions
This paper proposes a new method based on the ideal input vector to estimate inputs of a given decision making unit (DMU) when some or all of its outputs are increased to maintain its current efficiency level. In other words, this paper studied the following question: How much would be the increase in the inputs of the DMU if the decision maker increases certain outputs to a particular unit in ...
متن کاملIntegrating Differential Evolution Algorithm with Modified Hybrid GA for Solving Nonlinear Optimal Control Problems
‎Here‎, ‎we give a two phases algorithm based on integrating differential evolution (DE) algorithm with modified hybrid genetic algorithm (MHGA) for solving the associated nonlinear programming problem of a nonlinear optimal control problem‎. ‎In the first phase‎, ‎DE starts with a completely random initial population where each individual‎, ‎or solution‎...
متن کاملRobust portfolio selection with polyhedral ambiguous inputs
Ambiguity in the inputs of the models is typical especially in portfolio selection problem where the true distribution of random variables is usually unknown. Here we use robust optimization approach to address the ambiguity in conditional-value-at-risk minimization model. We obtain explicit models of the robust conditional-value-at-risk minimization for polyhedral and correlated polyhedral am...
متن کاملAn optimization based domain decomposition method for PDEs with random inputs
Jangwoon Lee* ([email protected]), University of Mary Washington, Department of Mathematics, 1301 College Ave, Fredericksburg, VA 22401, and Jeehyun Lee and Yoongu Hwang. An Optimization Based Domain Decomposition Method for PDEs with Random Inputs. An optimization-based domain decomposition method for stochastic elliptic partial differential equations is presented. The main idea of the method is a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993